
 - 1 -

Performance Evaluation of Remote Memory Access (RMA)
Programming on Shared Memory Parallel Computers

Haoqiang Jin and Gabriele Jost∗

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000

{hjin,gjost}@nas.nasa.gov

NAS Technical Report NAS-03-001, January 2003

Abstract

The purpose of this study is to evaluate the feasibility of remote memory access (RMA)

programming on shared memory parallel computers. We discuss different RMA based
implementations of selected CFD application benchmark kernels and compare them to

corresponding message passing based codes. For the message-passing implementation

we use MPI point-to-point and global communication routines. For the RMA based

approach we consider two different libraries supporting this programming model. One is

a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is

the MPI-2 extension to the MPI Standard. We give timing comparisons for the different

implementation strategies and discuss the performance. We also include the application

programming interface (API) for SMPlib at the end of this report.

1. Introduction

In this study we will compare different programming paradigms for the parallelization of large
scientific applications on shared memory computer architectures. The applications we consider
are such that they can be divided into sub-problems so that many processes can work together on
different parts of the same data structure.

Parallel programming on a shared memory machine can take advantage of the globally shared
address space. Compilers for shared memory architectures usually support multi-threaded
execution of a program. Loop level parallelism can be exploited by using compiler directives
such as those defined in the OpenMP standard [5]. Lightweight threads are automatically created
for performing the work in parallel. Data transfer between threads is done by direct memory
references. This approach provides a relatively easy way to develop parallel programs but has
disadvantages. It is difficult to achieve scalability for a large number of processors and it is not
portable to distributed memory architectures.

∗ Computer Sciences Corporation, M/S T27A-1, NASA Ames Research Center.

 - 2 -

The programming models considered in this study assume that each process has its own local
memory. Message passing is a well understood programming paradigm for this situation. The
computational work and the associated data are distributed between a number of processes. If a
process needs to access data located in the memory of another process, it has to be
communicated via the exchange of messages. The data transfer requires cooperative operations
to be performed by each process, that is, every send must have a matching receive. The regular
message passing communication achieves two effects: communication of data from sender to
receiver and synchronization of sender with receiver. The Remote Memory Access (RMA)
programming model is also based on the concept of processes with their own local memory, but
it separates the communication and synchronization step. A process is allowed to read from or
write to data areas located on other processes, without the exchange of messages. Data transfer
between two processes is performed by only one side and does not require a matching operation
by the other process. The correct ordering of memory accesses has to be imposed by the user
through explicit synchronization.

Both programming models are applicable on distributed as well as shared memory computer
architectures. Message passing on a shared memory machine may be implemented as memory-
to-memory, however, libraries supporting this paradigm, such as the MPI 1.1 standard [3], often
impose a high latency. The RMA functionality allows implementations to directly take
advantage of fast communication mechanisms provided by the hardware platform, such as
coherent shared memory, hardware supported put and get operations or communication co-
processors.

In this study we evaluate their effect on performance for programming shared memory
architectures. We first discuss different RMA programming paradigms in Section 2, present
benchmark implementations with RMA in Section 3, compare the performance results in Section
4, and conclude in the last section.

2. Library Support for Different Parallel Programming Paradigms

To study the impact on performance of the message passing vs. RMA parallel programming, we
chose two libraries supporting these programming models.

2.1. MPI and MPI-2

MPI (Message Passing Interface) [3] is a widely accepted standard for writing message passing
programs. It is a standard programming interface for the construction of a portable, parallel
application in Fortran or in C, especially when the application can be decomposed into a fixed
number of processes operating in a fixed topology (for example, a pipeline, grid, or tree). MPI
provides the user with a programming model where processes communicate by calling library
routines to send and receive messages to other processes. Pairs of processes can perform point-
to-point communication to exchange messages. A group of processes can call collective

 - 3 -

communication routines to implement global operations such as broadcasting values or
calculating global sums. Global synchronization can be implemented by calls to barrier routines.
Asynchronous communication is supported by providing calls for probing and waiting for certain
messages. For all communication operations the sending as well as the receiving side have to
issue calls to the message-passing library.

MPI-2 [4] is an extension to the MPI standard. MPI-2 provides one-sided communication
routines to support the RMA programming model. These routines extend the communication
mechanism of MPI by allowing one process to specify all communications parameters. RMA is
initiated with a collective library call where each process specifies an area of memory that is
made accessible to remote processes. This shared memory buffer is used for the exchange of
data. A call to a one-sided communication routine needs to be issued only by one process and
does not require a matching call by sender or receiver respectively. MPI-2 provides point-to-
point and barrier synchronization operations and it is the user’s responsibility to ensure memory
coherence. The MPI-2 extensions that we used in our study are:

• MPI_Win_create: A collective routine for setting up a shared memory buffer.

• MPI_Get, MPI_Put: Routines for transferring data to and from a shared memory buffer.

• MPI_Win_fence: A routine for performing collective synchronization.

MPI-2 extensions also include routines for point-to-point synchronization, however, they were
not available on the hardware platforms that we used for our study.

The SGI Origin offers the SHMEM library which provides similar functionality as the MPI-2
extensions for one-sided communication. Since this library is only available on SGI systems we
chose the MPI-2 extensions for our study to have more potential for portability to other systems.

2.2. MLP and SMPlib

MLP is a methodology of programming developed by Taft [8] at NASA Ames Research Center
for achieving high levels of parallel efficiency on shared memory machines. It exploits two-level
parallelism in applications: coarse-gained (domain decomposition) with forked processes and
fine-grained (loop level) with OpenMP threads. Communication between MLP processors is
done by directly accessing data in a shared memory buffer, and as a result MLP has very high
bandwidth and low latency. Coupled with the second level parallelism MLP has demonstrated
scalability on more than 500 processors for real CFD problems [8].

The shared-memory parallel programming model in MLP is summarized in Figure 1. A program
starts with a single process, the master process, to perform initialization, such as reading input
data from a file, and set up necessary shared memory buffers (or arena) for communication.
Additional processes are then created via the fork call. The forked processes have a private copy
of the virtual memory of the master process except for the shared memory arena. Thus,
broadcasting any input data is not necessary in this model as it would have been required in a

 - 4 -

message passing program. The master and its forked processes then work on the designated code
segments in parallel and synchronize as needed.

The MLP library (MLPlib) consists of only three routines:

MLP_getmem to get a piece of shared memory, MLP_forkit

to spawn processes and MLP_barrier to synchronize

processes. For completeness, we include the description of the
three MLP routines in Appendix A as taken from [8]. The
simplicity of MLPlib makes programming with MLP relatively
easier, even though a user still needs to perform the tedious task
of domain decomposition. The main limitation of MLPlib is its
lack of point-to-point synchronization primitives, which are
usually required for more general class of applications.

We have extended the MLP concept to overcome some of its
limitations and developed the SMP library (SMPlib). SMPlib

includes the SMP_Signal and SMP_Wait primitives for

point-to-point synchronization between processors. A processor

may update a shared buffer and use SMP_Signal to inform

another processor the availability of the data; the other

processor can use SMP_Wait for the notification of the signal to copy data from the shared

buffer. The Signal/Wait approach is very flexible and in general has less communication
overhead than a global barrier. In the meantime SMPlib still maintains a simple programming
interface like MLP and can easily be applied to more general applications. The complete
description of the SMPlib API is included in Appendix B.

In the current study, we focus on the effectiveness of the first level parallelism with SMPlib, that
is, the fine-grained loop-level parallelism with OpenMP is not considered.

SMPlib supports RMA programming but employs a somewhat different programming paradigm
from MPI-2. The properties of the different programming paradigms are summarized in Figure 2

Figure 1: The shared-memory
parallel programming model
with forked processes.

Main

End

Initialize

Set up shared
memory arena

Fork processes

Synchronize

Execute parallel
work

 - 5 -

 MPI MPI-2 SMPlib

Data Model private private mix of private and
shared

Domain
Decomposition

required required required

Communication explicit call to
communication
routines by sender
AND receiver

explicit call to
communication
routine by sender OR
receiver

direct access of shared
memory buffer
without library calls

Communication
Latency (SGI Origin)

~5 microseconds ~0.5 microseconds ~0.5 microseconds

Synchronization implicit in message
exchange

explicit library calls explicit library calls

Portability shared and distributed
architectures

shared and distributed
architectures

shared memory
architectures

Figure 2: Properties of the different programming paradigms.

3. Benchmark Implementations

We used the NAS Parallel Benchmarks (NPBs) [1] for our RMA study. The NPB suite consists
of five kernels and three simulated CFD applications derived from important classes of
aerophysics applications. The five kernels mimic the computational core of five numerical
methods used by CFD applications. The simulated CFD applications reproduce much of the data
movement and computation found in full CFD codes. We chose a subset of the NPB consisting
of the three application benchmarks (BT, SP and LU) for our study.

3.1. Porting Message Passing to RMA

As a basis for our evaluation we started with the MPI implementation NPB2.3 [2] of the
benchmarks, which we ported to the RMA programming model. We adopted the domain
decomposition strategy of these implementations which we will explain in more detail below.
Porting from message passing to RMA consists of three major steps. In the RMA initialization
phase a shared memory buffer has to be allocated. This buffer will be used to hold data that

 - 6 -

needs to be accessed by remote processes. The second step consists of replacing the calls to the
message passing routines by read and write operations from and to the shared memory buffer. At
last necessary calls to synchronization routines have to be inserted.

There are two approaches to synchronization. A collective call to a barrier routine will cause
all processes to wait until the last process has reached the barrier. Another approach is point-to-
point synchronization where a process waits for one particular named process until it receives a
signal.

In all of our implementations each process logically owns a specific part of the shared memory
buffer. We distinguish between two methods to update the values in the shared memory buffer.
A process can place values to be communicated in its own segment of the buffer. The remote
process requiring the data will read it from there. We refer to this approach as the GET method.
Alternatively a process can write data directly into a remote processes segment of the shared
memory buffer. We refer to this approach as the PUT method. Figure 3 illustrates the two
methods.

The code fragments in Figure 4 show the nature of the coding differences when employing the
various communication libraries. The code implements the communication of one word in
variable A from process P1 to process P2. In the MPI message passing version process P1 issues

a call to mpi_send while process P2 makes the corresponding call to mpi_receive. When

using the MPI-2 extension for one-sided communication, process P1 writes A to the shared

memory buffer. Then the processes synchronize via a call to mpi_win_fence before process

P2 issues a call to mpi_get to read A. For the SMPlib based implementation we show the use

of point-to-point synchronization. Process P1 write A to its segment of the shared memory
buffer. For simplicity we assume that the size of the segment is 1 and use the process ID of P1 to
index the buffer. Then process P1 sends a signal to P2. Process P2 waits until it receives a signal
from P1 and then reads the updated value from the buffer.

Figure 3: Two ways of updating the shared memory buffer. Arrows with
solid line indicate writing, while the dashed lines indicate reading.

W

0 1 2 3

0 1 2 3

R R

0 1 2 3

0 1 2 3

W

The GET method The PUT method

Buffer

Nodes

 - 7 -

MPI

if (iam .eq. P1) then
 call mpi_send(…A, P2,…)
endif
if (iam eq. P2) then
 call mpi_receive(…B, P1,…)
endif

MPI-2

if (iam .eq. P1) then
 buffer (1) = A
endif
call mpi_win_fence(…)
if (iam .eq. P2) then
 call mpi_get (..buffer, P1,…)
 B = buffer (1)
endif

SMP Signal/Wait

if (iam .eq.P1) then
 buffer (P1) = A
 call smp_signal (P2)
endif
if (iam .eq. P2) then
 call smp_wait (P1)
 B = buffer (P1)
endif

Figure 4: Code examples for communication operations

3.2. BT and SP Benchmarks

BT and SP benchmarks have a similar structure: each solves three systems of equations resulting
from an approximate factorization that decouples the x, y and z dimensions of 3-dimensional

Navier-Stokes equations. These systems are block tridiagonal of 5×5 blocks in the BT code and
scalar pentadiagonal in the SP code. Each direction is alternatively swept.

The MPI implementations of BT and SP employ a multi-partition scheme [2] in 3-D to achieve
good load balance and coarse-grained communication. In this scheme, processors are mapped
onto sub-blocks of points of the grid in a special way such that the sub-blocks are evenly
distributed along any direction of solution, as illustrated in Figure 3 for a 2-D case. Throughout
the sweep in one direction, each processor starts working on its sub-block and sends partial
solutions to the next processor before going into the next stage. Communications occur at the
sync points as indicated by gray lines in Figure 5.

In the RMA implementations of the benchmarks, communications are handled by data
exchange through the shared memory buffers and proper synchronization primitives. As
mentioned in Section 3.1, we have used two methods to handle the communication at the sync

points in the solvers: barrier synchronization (BAR) and signal/wait (SW). With the BAR
method, all processors copy local data to their designated shared memory buffers and place a
global barrier before copying the shared data to the local area. With the SW method, each
sending processor copies local data to its designated shared memory buffer and signals its
neighbor the shared data is ready; each receiving processor waits for a signal from its neighbor
and, then, copies the shared data to its local area. In essence the SW approach is very similar to
SEND/RECV in the message passing except that data are exchanged directly through the shared
memory buffer rather than messages. To avoid that data in the shared buffer is overwritten before
it has been read in the previous stage, we have subdivided each shared buffer area into separate
sections for each stage.

 - 8 -

Besides in the main solvers,
communications also occur in
copy_faces where all processors
exchange solutions for the ghost points
in all three directions. It is
straightforward to use global barrier
synchronization for this case.

We also produced versions of BT using
the PUT and GET methods for updating
the shared memory buffer as described
in Section 3.1. The performance of
different versions will be compared in
Section 4.

3.3. LU Benchmark

LU benchmark employs the symmetric successive over-relaxation (SSOR) scheme to solve 3-D
Navier-Stokes equations. The inherited data dependences in the scheme require the solutions at
(i+e,j,k), (i,j+e,k) and (i,j,k+e), where e=–1 or +1, be available before the calculation at (i,j,k) is
performed. The MPI implementation of LU utilizes a 2-D partitioning of the grid onto processors
and a 2-D coarse-grained pipeline model [9] for parallelization. To illustrate the pipeline method
Figure 6 shows a case of a 1-D pipeline in which data are distributed in the J direction among
four processors. Processor 0 starts from the low-left corner and works on one slice of data for the
first K value. Other processors are waiting for data to be available. Once processor 0 finishes its
job, processor 1 can start working on its slice for the same K and, in the meantime, processor 0
moves onto the next K. This process continues until all the processors become active. Then they
all work concurrently to the opposite end, as indicated by the large arrow in the figure. The cost
of pipelining results mainly from the wait in startup and finishing. A 2-D pipelining can reduce
the wait cost and was adopted in the MPI version of LU.

Figure 5: The multi-partition scheme in 2-D. Four
processors are evenly mapped onto 4x4 sub-blocks in a 2-
D grid. The solving (or sweep) direction is in vertical.

sweep
direction

sync
point

3 0 1 2

2 3 0 1

1 2 3 0

0 1 2 3

 - 9 -

Implementing the SMPlib version of LU
is relatively simple because of the use of
the Signal/Wait functions for point-to-
point synchronizations in the 2-D
pipeline. Shared memory buffers were
allocated large enough to hold boundary
points in one K slice assigned to each
processor. Special care has been taken to
guide the update of the shared memory
buffers during the K sweep so that these
buffers are properly copied to the local
areas before their values are overwritten
at the next K slice. We did not use
global barrier synchronization to
synchronize communications in the pipeline for the two reasons: use of a global barrier would be
very expensive, especially when the barrier is inside a loop (K) nest, and bookkeeping the global
synchronization points would increase the porting effort. For the same reason we did not
implement an MPI-2 version of LU.

4. Timing Results

We tested our RMA implementations of the benchmarks on two platforms: an SGI Origin 2000
and a SUN Enterprise 10000. The Origin 2000 consists of 512 MIPS R12K 400MHz processors,
each with 8MB L2 cache, running IRIX 6.5. The SGI MIPSpro 7.3.1.2m compiler was used for
compilation and the Message Passing Toolkit (MPT) 1.4.0.3 for MPI codes. A highly tuned,
efficient implementation of MPI is part of the MPT. Within a single system, MPI messages are
moved memory-to-memory. Between nodes of an Silicon Graphics Array system, MPI messages
are passed over a HIPPI network. Latency and bandwidth are intermediate between memory-to-
memory data exchange and socket-based network communication.

 The SUN E10K consists of 16 Ultra SPARC 333MHz processors, running Solaris 7. The Sun
Workshop 6 compiler was used in the compilation and SunHPC 3.1 for MPI codes.

There are different classes of the benchmarks depending on their problem size. For our study we
considered class A (64x64x64 grid) and class B (102x102x102 grid).

4.1. Comparison of Different RMA Implementation Strategies

We chose the BT benchmark of class A to compare different implementation strategies based on
the RMA programming model. We obtained the timings on the SGI Origin. In a first experiment
we compared the PUT versus the GET method as described in Section 3.1. For both the SMPlib

 k

 j

0

1

2

3

Sync point

Figure 6: 1-D pipeline used in the SSOR solver of LU.
Data are distributed in the J dimension.

 - 10 -

and the MPI-2 library, the GET method showed a better performance than the PUT method. The
maximum performance advantage of GET versus PUT was about 15% for 256 processes. In the
left panel of Figure 7 we show the comparison of SW versus BAR implementation, based on the
SMPlib library. The numbers of MFLOP per second as plotted are those reported by the
benchmarks and reflect the scalability. The SW version shows a strong performance advantage
over the BAR version, which is due to less time spent in process synchronization. The
comparison of SMPlib versus MPI-2 is shown in the right panel of Figure 7. Since MPI-2
extensions for point-to-point synchronization are not available on the SGI Origin we only
compared the BAR versions of the benchmarks. The results were very similar with a slight
performance advantage for the MPI-2 based code. We expect MPI-2 to behave close to the
SMPlib SW version once the signal and wait extensions of MPI-2 become available on the SGI
Origin.

0

10000

20000

30000

M
F

LO
P

/s

0 50 100 150 200 250

Number of Processors

 SMP-bar
 SMP-sw

BT
Class A

0 50 100 150 200 250

Number of Processors

 MPI2
 SMP-bar

Figure 7: Performance comparison of different implementation strategies based on RMA.

4.2. Comparison of RMA versus Message Passing

In this section we compare the SMPlib based BAR and SW GET versions on the code against the
MPI message passing version for different benchmarks, problem classes, and computer
architectures. The reasons why we chose SMPlib instead of MPI-2 are:

• MPI-2 extensions are not available on our SUN evaluation platform while the SMPlib library
could be easily ported to the SUN.

• MPI-2 extensions for signal and wait were not available on either platform.

We expect similar behavior for MPI-2 once the full functionality becomes available on all
platforms.

The MFLOP/s results obtained on the SGI Origin 2000 are summarized in Figure 8 for all three
benchmarks and two problem sizes (class A and class B). A straight line in the figure is a
reference of a linear speedup based on the timing from the single process run. In all cases, the
SMP-sw versions show the best performance, especially on a large number of processors. The

 - 11 -

MPI versions of BT and SP performed slightly better than the SMP-bar versions for the class A
problem, however, the MPI scaling suffered a performance drop on more than 200 processors for
the class B problem. In fact the SMP-bar versions even outperformed MPI.

0

10000

20000

30000 BT
Class A

SP
Class A

LU
Class A

0

10000

20000

30000

40000

M
F

LO
P

/s

0 50 100 150 200 250 300

BT
Class B

0 50 100 150 200 250 300

Number of Processors

 MPI
 SMP-sw
 SMP-bar

SP
Class B

0 50 100 150 200 250 300

LU
Class B

Figure 8: Comparison of MPI, SMP-sw and SMP-bar implementations of the three benchmarks on the
SGI Origin 2000.

OpenMP implementations of the same benchmarks suffer from the fact that parallelism is only
exploited at the outermost loop level. The scalability is therefore restricted by the number of grid
points in one dimension, which is 64 for class A and 102 for class B.

The MFLOP/s results obtained on the SUN E10K are summarized in Figure 9 for all three
benchmarks, class A problem size. Because of the limited number of processors in the machine,
the MPI, SMP-sw and SMP-bar implementations of the benchmarks show very similar
performance. However, the SMPlib version of LU does show better performance than the MPI
version on 16 processors, which may indicate the lower overhead of the SMPlib Signal/Wait
functions over the MPI send/receive.

 - 12 -

0

500

1000

1500

2000

M
F

LO
P

/s

0 4 8 12 16

 MPI
 SMP-sw
 SMP-bar

BT
Class A

0 4 8 12 16

Number of Processors

SP
Class A

0 4 8 12 16

LU
Class A

Figure 9: Comparison of MPI, SMP-sw and SMP-bar implementations of the three benchmarks on the
Sun E10K.

5. Related Work

In [8] Taft discusses the performance of a large CFD application. He compares the scalability of
message passing versus hybrid parallelization based on RMA and OpenMP. The RMA
programming employed in this paper has extended synchronization functionality from the one in
[8], but we only consider outer level parallelization.

There are number of papers reporting on comparisons of different programming paradigms. A
comparison of message passing and RMA is given in [6] and [7]. The study uses the SGI
SHMEM library for RMA programming. The programming paradigm supported and the
functionality provided by the SHMEM library is similar to MPI-2. With SMPlib we are
employing a somewhat different programming paradigm and compare it to both, message
passing as well as one-sided communication.

6. Conclusion

We have ported several benchmarks from the NPB2.3 suite to the RMA programming model.
Porting the code was straightforward, since we could adopt the same domain decomposition
approach in the message passing implementation. We compared different implementation
strategies of RMA for shared memory computer architectures. Point-to-point synchronization
and the GET memory access showed the best performance. In comparing RMA versus message
passing we found that RMA yielded better scalability.

The MPI-2 extensions for one-sided communication provide support for RMA programming, but
the full functionality is currently not available on many hardware platforms. As an alternative
programming paradigm to the one provided by the MPI-2 extensions we have implemented the
SMPlib library for RMA support. SMPlib provides functionality for process creation, allocation
of shared memory as well as barrier and point-to-point synchronization. The library could be

 - 13 -

easily ported to different hardware platforms and the performance was comparable to MPI-2
based code where available.

We are currently working on porting full-scale applications to the RMA programming model.
We also plan develop hybrid versions of these applications with RMA on the outer and OpenMP
on the inner level of parallelism.

Acknowledgements

This work was partially supported by NASA contracts NAS 2-14303 and DTTS59-99-D-
00437/A61812D with Computer Sciences Corporation.

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), “The NAS Parallel Benchmarks,”
NAS Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA,
1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, “The NAS
Parallel Benchmarks 2.0,” NAS Technical Report NAS-95-020, NASA Ames Research
Center, Moffett Field, CA, 1995. http://www.nas.nasa.gov/Software/NPB.

[3] MPI 1.1 Standard, http://www-unix.mcs.anl.gov/mpi/mpich.

[4] MPI–2: Extensions to the MPI Interface, http://www-unix.mcs.anl.gov/mpi/mpich.

[5] OpenMP Fortran Application Program Interface, http://www.openmp.org/.

[6] H. Shan, J. Pal Singh, “A comparison of MPI, SHMEM, and Cache-Coherent Shared
Address Space Programming Models on a Tightly-Coupled Multiprocessor” , International

Journal of Parallel Programming, Vol. 29, No. 3, 2001.

[7] H. Shan, J. Pal Singh, “Comparison of Three Programming Models for Adaptive
Applications on the Origin 2000”, Journal of Parallel and Distributed Computing 62, 241-

266, 2002.

[8] J. Taft, “Achieving 60 GFLOP/s on the production CFD code OVERFLOW-MLP,” Parallel

Computing, 27 (2001) 521.

[9] M. Yarrow and R. Van der Wijngaart, “Communication Improvement for the LU NAS
Parallel Benchmark,” NAS Technical Report NAS-97-032, NASA Ames Research Center,
Moffett Field, CA, 1997.

 - 14 -

Appendix A. The Multi-Level Parallelization Library (MLPlib)

The MLP library was developed by James Taft at NASA Ames Research Center for multi-level
parallelization. The following summarizes the three routines included in MLPlib for the
FORTRAN language as described in [8].

A.1. Allocating the Shared Memory Segment

subroutine mlp_getmem(numvar,isizes,ipoint)
integer*8 numvar,isizes(numvar),ipoint(numvar)

where:

numvar : the total number of shared arrays,

isizes : an array containing sizes of the arrays in bytes,

ipoint : an array containing pointers to shared arrays.

This routine sets up a shared memory segment and establishes a number of pointers to shared

arrays with sizes contained in the isizes array. The mlp_getmem routine is called only once.

It must be called before the mlp_forkit routine described below.

A.2. Spawning MLP Processes

subroutine mlp_forkit(nowpro,numpro,numcps,idopin)
integer*4 nowpro,numpro,numcps(numpro),idopin

where:

numpro : the number of MLP processes,

nowpro : the returned logical id of the current MLP process (1,2,...,numpro),

numcps : array designating how many OpenMP threads per MLP process,

idopin : if set to one (1), pin the processes.

This routine creates the numpro number of identical processes and is called once.

A.3. Barrier Synchronization of MLP Processes

subroutine mlp_barrier(nowpro,numpro)
integer*4 nowpro,numpro

where:

numpro : the number of MLP processes,

nowpro : logical id of the current MLP process.

This routine barrier-synchronizes all MLP forked processes.

 - 15 -

Appendix B. The Shared Memory Parallelization Library (SMPlib)

The SMPlib routines are designed for parallel processing on a shared memory machine. The
concept is derived from the MLP library ([8], Appendix A), but with extended functions and
syntax. The library contains interfaces for both C and FORTRAN languages and is compatible
with 32-bit and 64-bit architectures. This document summarizes the SMPlib v2.1 application
programming interface (API).

B.1. Environment Variables

 SMP_NUM_PROCS - Number of processes to be forked.
 Default uses the argument from SMP_FORK()
 or SMP_FORKTHREAD().
 OMP_NUM_THREADS - Number of threads per process.
 Default uses the argument from SMP_FORKTHREAD()
 or 1 for SMP_FORK().
 SMP_TMPDIR - Directory for temporary SMP files.
 Default is "." (the current directory).
 SMP_DEBUG - Debugging flag, default is 0.
 0 no debugging information,
 1 debugging information printed to <stdout>,
 2 debugging information written to smp_lib.log_myid.
 SMP_TLOG - Time profiling flag, default is 0.
 This flag is meaningful only if the TLOG option is compiled into

SMPlib to perform time profiling of SMPlib calls.
 SMP_PINIT - The “pin-to-node” flag, default is 0.
 This flag is meaningful for jobs running on SGI Origin machines

under the PBS scheduler (i.e. when PBS_NODEMASK is defined).

B.2. Prototype Definition

The prototype for the C interface is defined in "smp_lib.h" and for the FORTRAN interface
is defined in "smp_libf.h".

The prototype for the timer routines is defined in "smp_timer.h" (C interface) and
"smp_timerf.h" (FORTRAN interface).

The FORTRAN interface has a very similar syntax as the C interface except for the routines
SMP_GETSHMEM and SMP_GETLOCMEM. The routine SMP_GETSHMEMP is defined for a
platform that supports the Cray pointer.

 - 16 -

B.3. Process Creation

 void SMP_Init(void);

 SUBROUTINE SMP_INIT
 – initializes SMPlib parameters, should be the first thing to call. The environment

variable SMP_TMPDIR is used to define the directory for temporary SMP files,
default to "." (the current directory). Environment variable SMP_DEBUG is checked.

 int SMP_Fork(int num_procs);

 INTEGER FUNCTION SMP_FORK(NUM_PROCS)
 INTEGER NUM_PROCS
 – forks"num_procs" processes and return the rank (0 to num_procs-1) of the

current process in the process group. If num_procs=0, the environment variable
SMP_NUM_PROCS will be used. If SMP_NUM_PROCS is undefined, no subprocess
is created, i.e. num_procs=1 is used. Number of threads per process is defined by
the environment variable OMP_NUM_THREADS. If OMP_NUM_THREADS is
undefined, one (1) is assumed.

 int SMP_Forkthread(int num_procs, int num_threads[]);

 INTEGER FUNCTION SMP_FORKTHREAD(NUM_PROCS, NUM_THREADS)
 INTEGER NUM_PROCS, NUM_THREADS(0:*)
 – forks "num_procs" processes and return the rank (0 to num_procs-1) of the

current process in the process group. If num_procs=0, the environment variable
SMP_NUM_PROCS will be used. If SMP_NUM_PROCS is undefined, no subprocess
is created, i.e. num_procs=1 is used. In addition, num_threads[i] of threads is
specified for process i. If num_threads[i] is 0, the variable
OMP_NUM_THREADS will be checked; if OMP_NUM_THREADS is undefined, one (1)
is assumed.

 void SMP_Finish(void);

 SUBROUTINE SMP_FINISH
 – finishes and cleans up things, should be called by all processes.

 - 17 -

B.4. Memory Allocation

 void *SMP_Getshmem(size_t size);
 – C: gets a piece of shared memory with "size" bytes. A pointer to the allocated

memory segment is returned. The function is usually called before SMP_Fork. But
the function may also be used after SMP_Fork, in which case it must be called by all
the processes with the same requested size. The same restriction applies to the
FORTRAN SMP_GETSHMEM and SMP_GETSHMEMP routines as well.

 SUBROUTINE SMP_GETSHMEM(REFP, KIND, SIZE, IOFF)
 <type> REFP(1)
 INTEGER KIND, SIZE
 <pointer> IOFF
 – FORTRAN: gets a piece of shared memory for "kind" with "size" elements.
 <type> is the reference type, such as REAL, INTEGER,...
 KIND is one of (1,2,4,8,16) as the size of the reference type
 SIZE is the number of elements to be allocated
 <pointer> is a type large enough to hold an address:
 For 32-bit, this can be INTEGER*4.
 For 64-bit, this can be INTEGER*8.
 Reference to the allocated shared memory is done by REFP(IOFF) as the first

element. The function may be used after SMP_FORK, but should be called by all the
processes with the same requested size.

 SUBROUTINE SMP_GETSHMEMP(KIND, SIZE, IPTR)
 INTEGER KIND, SIZE
 POINTER IPTR
 – FORTRAN: gets a piece of shared memory for "kind" with "size" elements.
 KIND is one of (1,2,4,8,16) as the size of the reference type
 SIZE is the number of elements to be allocated
 IPTR is the returned pointer that points to the allocated memory.
 This function can be used on platform that supports the Cray pointer. Typically a

variable is declared as
 <type> VAR(1)
 POINTER (IPTR,VAR)
 Reference to the allocated shared memory is done by VAR(1) as the first element. The

approach works for both 32-bit and 64-bit platforms.

 int SMP_Pagesize(void);

 INTEGER FUNCTION SMP_PAGESIZE()
 – returns the memory page size in bytes.

 - 18 -

B.5. Lock and Barrier

 void SMP_Setlock(void);

 SUBROUTINE SMP_SETLOCK
 – waits for the SMPlib global lock and sets the lock when it is available.

 void SMP_Unsetlock(void);

 SUBROUTINE SMP_UNSETLOCK
 – releases the SMPlib global lock after it was set.

 void SMP_Barrier(void);

 SUBROUTINE SMP_BARRIER
 – synchronizes all processes, including the master process, has to be called by each

process.

 int SMP_Testsignal(int node, int tid);

 INTEGER FUNCTION SMP_TESTSIGNAL(NODE, TID)
 INTEGER NODE, TID
 – tests if a node is ready for signal from the current node. If node < 0, signal to any

node. Returns the node number the signal will actually be sent to. The call ensures
any previous signal sent to node from the current node has been taken. The second
argument tid tags the signal to a particular thread. This function is always used
together with SMP_Setsignal.

 void SMP_Setsignal(int node, int tid);

 SUBROUTINE SMP_SETSIGNAL(NODE, TID)
 INTEGER NODE, TID
 – sets a signal for node after SMP_Testsignal is called. The second argument tid

tags the signal to a particular thread.

 void SMP_Signal(int node, int tid);

 SUBROUTINE SMP_SIGNAL(NODE, TID)
 INTEGER NODE, TID
 – sends a signal to node. If node < 0, signal to any node. The second argument tid

tags the signal to a particular thread. This function is equivalent to
SMP_Testsignal + SMP_Setsignal.

 - 19 -

 int SMP_Testwait(int node, int tid);

 INTEGER FUNCTION SMP_TESTWAIT(NODE, TID)
 INTEGER NODE, TID
 – waits for a signal from node. If node < 0, signal from any node. Returns the node

number the signal is actually from. The second argument tid tags the signal to a
particular thread. This function is always used together with SMP_Ackwait.

 void SMP_Ackwait(int node, int tid);

 SUBROUTINE SMP_ACKWAIT(NODE, TID)
 INTEGER NODE, TID
 – acknowledges the reception of a signal from node after SMP_Testwait is called.

The second argument tid tags the signal to a particular thread.

 void SMP_Wait(int node, int tid);

 SUBROUTINE SMP_WAIT(NODE, TID)
 INTEGER NODE, TID
 – waits for a signal from node. If node < 0, signal from any node. The second

argument tid tags the signal to a particular thread. This function is equivalent to
SMP_Testwait + SMP_Ackwait.

B.6. Utility Routines

 int SMP_Myid(void);

 INTEGER FUNCTION SMP_MYID()
 – returns the rank of the current process.

 int SMP_Numprocs(void);

 INTEGER FUNCTION SMP_NUMPROCS()
 – returns the number of processes, including the master.

 double SMP_Wtime(void);

 DOUBLE PRECISION FUNCTION SMP_WTIME()
 – gets wallclock time in seconds.

 int SMP_Debug(int newflag);

 INTEGER FUNCTION SMP_DEBUG(NEWFLAG)
 INTEGER NEWFLAG
 – resets the debug flag (0, 1, or 2, see B.1 for SMP_DEBUG).

 - 20 -

The following routines define a set of timers. Maximum number of timers is 64. The "timer"
field is from 1 to 64. The timer routines are not thread-safe.

 void SMP_Timer_init(int timer);

 SUBROUTINE SMP_TIMER_INIT(TIMER)
 INTEGER TIMER

– initializes a timer (if timer > 0) or all timers (if timer==0). The routine

SMP_Init() initializes all timers. This function is used to reset a timer (to zero).

 void SMP_Timer_start(int timer);

 SUBROUTINE SMP_TIMER_START(TIMER)
 INTEGER TIMER

– starts a timer.

 void SMP_Timer_stop(int timer);

 SUBROUTINE SMP_TIMER_STOP(TIMER)
 INTEGER TIMER

– stops a timer.

 double SMP_Timer_read(int timer);

 DOUBLE PRECISION FUNCTION SMP_TIMER_READ(TIMER)
 INTEGER TIMER

– returns the current value of a timer in seconds. The timer will be stopped first if it has
not.

 void SMP_Timer_string(int timer, char *str);

 SUBROUTINE SMP_TIMER_STRING(TIMER, STR)
 INTEGER TIMER
 CHARACTER STR*(*)

– defines a string for a timer. The string is used by SMP_Timer_print().

 void SMP_Timer_print(int timer);

 SUBROUTINE SMP_TIMER_PRINT(TIMER)
 INTEGER TIMER

– prints a timer (if timer > 0) or all timers (if timer==0).

